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ABSTRACT 

Deriving the exact casual model that governs the relations between 
variables in a multidimensional dataset is difficult in practice. It is 
because causal inference algorithms by themselves typically cannot 
encode an adequate amount of domain knowledge to break all ties. 
Visual analytic approaches are considered a feasible alternative to 
fully automated methods. However, their application in real-world 
scenarios can be tedious. This paper focuses on these practical 
aspects of visual causality analysis. The most imperative of these 
aspects is posed by Simpson’ Paradox. It implies the existence of 
multiple causal models differing in both structure and parameter 
depending on how the data is subdivided. We propose a 
comprehensive interface that engages human experts in identifying 
these subdivisions and allowing them to establish the 
corresponding causal models via a rich set of interactive facilities. 
Other features of our interface include: (1) a new causal network 
visualization that emphasizes the flow of causal dependencies, (2) 
a model scoring mechanism with visual hints for interactive model 
refinement, and (3) flexible approaches for handling heterogeneous 
data. Various real-world data examples are given.  
 
Keywords: Visual knowledge discovery, Causality, Hypothesis 
testing, Visual evidence, High-dimensional data 

1 INTRODUCTION 

The urge to find the causal explanations behind one or more 
observed phenomena is an inherent trait of human nature, and the 
massive growth of data can help satisfy this innate curiosity. While 
correlation has been widely used as evidence of causation, relations 
derived in this way can be ambiguous and often even spurious (A 
great many of such examples can be found at the website of 
spurious-correlations [1]). What is needed is a dedicated causality 
framework capable of measuring the dependency between two 
variables in the context of another set of controlled variables. While 
a number of algorithms have been devised for identifying causal 
relation in multivariate data, these algorithms typically cannot 
encode existing domain knowledge, or even common sense, to 
guide their analyses. This, in turn, leads them to hold strong 
assumptions on data distributions which can rarely be satisfied in 
practice. A remedy to overcome this significant shortcoming is to 
insert a human into the casual inference loop as a synergist partner. 

This realization has led to efforts that use a visual analytics 
approach to casual inference, called visual causality analysis. It 
allows human experts endowed with domain knowledge and 
intuition to refute or propose causal links. We proposed a prototype 
of such an interface in an earlier paper [2], called the Visual 
Causality Analyst. It utilizes a 2D graph visualization of causal 
networks and a set of interactive tools that users can employ to 
examine the derived relations. While effective, this interface is 
nevertheless relatively simple and can only provide very basic 
functions of operating on a single model. Real world scenarios, 
however, incur many practical difficulties that such a simple tool 
cannot handle. 
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Fig. 1 The Causal Structure Investigator interface (a) Control panel for reading in data and setting inference parameters. (b) Interactive path 

diagrams for causal network visualization. (c) Parallel coordinates view for exploring data partitions. (d) Statistic coefficients tables of 

regressions associated with the causal model. (e) Data subdivision control, where a subdivision can be saved as a clickable tag. (f) Model 

diagnostic controls and the model heatmap, where users can examine learned models by clicking each tile colored by model scores. 
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The greatest practical challenge is posed by Simpson’s Paradox 
[3] which states that a relation held in the general population may 
be altered in data sub-groups given proper partitions. A widely-
used example for this phenomenon is the 1973 discovery of an 
apparent gender bias favoring male applicants in the graduate 
school admissions at UC Berkeley [4]. However, in fact, the gender 
bias was reversed when each department was considered separately 
– 6/85 departments appeared to favor females while only 4/85 
appeared to favor males. This discrepancy was not deliberating but 
explainable by unrelated admission facts. For causality analysis, 
Simpson’s paradox implies that possibly multiple causal models 
underlie a dataset, each for a certain subrange of the data across the 
factors. We propose a new set of tools to help analysts recognize 
where such decompositions might be appropriate and allow them 
to subdivide the data along certain dimensions or into clusters. In 
addition, we also provide facilities that allows analysts to compare 
between and extract credible relations from the derived multiple 
causal models via a pooling process that can either occur at the 
causal link level or at the model level. 

Another challenge is that real-world problems often have a mix 
of numerical and categorical (ordinal, nominal) data. This stands at 
odds with current causality algorithms which can only handle either 
numerical or categorical variable, but not both. To make the data 
homogeneous, we can either bin all numeric variables into 
categorical ones, or use our method [2] which transformed the 
categorical variables into numerical ones using a global re-spacing 
and re-ordering scheme. The problem with this scheme was that the 
distribution of the levels remains to be sparse which adds 
complexity to the casual inferencing. We propose a novel level-
enrichment scheme that absolves this problem, and along with it, 
we also devise a set of generalized inference algorithms with 
flexible options for handling heterogeneous data. 

Finally, causal models are often drawn in form of general 
directed networks and graphs in which flows of causal 
dependencies are hard to recognize. This also impedes the practical 
use of causality analysis as an analytics platform for general use. 
We have devised a new and more appropriate visualization of 
causal networks in form of path diagrams laid out using spanning 
trees. We find that these path diagrams give causal flows an 
effective narrative structure.  

In general, the major contributions of this paper include: 
 A new visualization of causal networks that better exposes 

the flow of causal sequences; 
 A scoring function along with corresponding visual hints 

that can be used to compare alternative causal models; 
 An improved method for handling heterogeneous data in 

causal inference along with their experimental evaluation; 
 Interactive facilities that allow users to explore data sub-

divisions from which different models can be inferred; 
 Mechanisms for diagnosing (or pooling) all derived models 

to recognize valuable causal relations and patterns. 
And all of these techniques have been implemented into a novel 
visual interface we call the Causal Structure Investigator (CSI). 
The teaser image in Fig. 1 shows its individual components. 

Our paper is structured as follows. Section 2 discusses related 
work. Section 3 briefly introduces the interface components and 
then presents detailed techniques used in the CSI framework for 
visual analysis of a single model. Section 4 discusses the impact of 
data partition on causal inference. Then two case studies, 
respectively, are presented in Section 5. Finally, Section 6 ends 
with conclusions and future work. 

2   RELATED WORK 

Following the seminal work of Pearl [5][6] and Spirtes [7], theories 
of causation modeling and discovery on multivariate datasets have 

been widely studied. Visual causality analysis has also become a 
popular topic in the field of visual analytics (VA) in recent years. 

2.1 Causality Modeling and Inference 

The set of causal relations between variables of a multidimensional 

dataset is usually depicted as a Directed Acyclic Graph (DAG) 

where variables are nodes and a directed edge between two nodes 

means the first causes the second. Algorithms learning the structure 

of such DAGs can be roughly classified into two categories – score-

based algorithms and constraint-based algorithms. The former 

typically associate a DAG with a score function, e.g. the Bayesian 

Information Criterion (BIC) [8][9], and performs, for instance, a 

greedy search in the space of all possible DAGs. Examples are the 

GES algorithm [10] and the K2 algorithm [11]. Since the number 

of possible structures is super-exponential in the number of 

variables, such algorithms usually suffer from high search cost. In 

contrast, the constraint-based algorithms build causal networks 

according to the constraints of dependencies and conditional 

dependencies in the data. Some well-known algorithms are SGS[7], 

PC [7][12], IC [13], Total Conditioning [14], and others. These 

constraints are usually learned with conditional independence (CI) 

tests via partial correlation [15], G2 statistics [16], or other 

techniques [17][18]. It is important to note that such algorithms are 

commonly based on several strong assumptions of data 

distributions which are rarely satisfied by real-world data. As a 

consequence, none can guarantee an exact model, especially when 

there are latent or nonlinearly related variables.  

Several causal modeling methods can be used to parameterize 

the learned DAG. The two most common choices are Bayesian 

Networks (BN) [5][19] and Structural Causal Models (SCM) 

[6][20]. The former quantifies causal relations with conditional 

probability tables, and the latter with linear functions plus Gaussian 

noise, e.g. linear regression and logistic regressions. As the 

knowledge of data distribution required in BN is usually hard to 

acquire in practice, we will use the algorithm of Total conditioning 

and PC in this paper to infer causal structures and then parameterize 

them as SCM models. 

2.2 Visual Causality Analysis 

Fig. 2 pictures the workflow of visual causality analysis proposed 

by Chen et al. [21], aiming to provide decision support in a typical 

organization and aid hypothesis generation and evaluation in a 

scientific investigation. One of the earliest attempts of such a 

system is the Growing-polygons [22] scheme which captures 

causation at the process level, i.e. as a sequence of causal events. It 

uses animated polygon colors and sizes to signify causal semantics. 

The work of Vigueras and Botia [23] considers ordered events in a 

distributed system as causations and visualizes their dependencies 

as causal graphs. Focusing on the upstream-downstream relations 

of variables, ReactFlow [24] visualizes causal relations as pairwise 

pathways connecting duplicated variables in two columns. Some 

other efforts in the visual mining of causation include OutFlow [25] 

and EventFlow [26]. Both visualize temporal event sequences as 

Fig. 2 The workflow of visual causality analysis by Chen et al. [21]. 



alternative pathways and use event chains to explore embedded 

patterns. Liu et al. [27] visualize event streams as flows aligned by 

event types. However, none of these above systems leverages 

automated algorithms for causal discovery, and so they require 

significant user input to acquire such knowledge. 
The first visual interface with the capability of automatic causal 

inference was proposed by us in previous work [2]. It visualizes 
causal networks as color-coded 2D graphs with force-directed 
layouts and offers a set of interactive tools for the user to examine 
the derived relations. The graph visualization we employed in this 
previous work has also been widely used in visualizing Bayesian 
belief networks [28], correlation networks [29], uncertainty 
networks [30], and many other graph-based analytic models 
[31][32]. The work in this paper is inspired by these methods but 
will provide a much-improved visualization and more 
comprehensive analytic capabilities that can handle many practical 
difficulties in real-world causality analysis. 

3 VISUAL INFERENCE OF SINGLE CAUSAL MODEL 

The design of the CSI interface (Fig. 1) fulfills the requirements of 
a causality VA system proposed by Chen et al. [21] (Fig. 2). More 
specifically, the parallel coordinates view (Fig. 1c) serves as the 
component for data visualization. Users have the option to start 
from either a causality model or a correlation graph (Fig. 1a). The 
path diagram view (Fig. 1b) and the regression analysis view (Fig. 
1d) then allow the visual analysis of both causation and correlation. 
The analytics on local causation models are achieved through the 
data subdivision view (Fig. 1e) and the model heatmap (Fig. 1f), 
with which user can visually examine each model derived from a 
data subdivision as well as the pooled models, getting full support 
for decision making and hypothesis evaluation. 

In this section, we will describe the various features of our 
framework in terms of a single model, which serves two major 
purposes: (1) communicate the automatically derived relations for 
the causal network and (2) allow users to examine their own 
proposed causal links as well as ones derived by algorithms. The 
next section will then expand it to analyze multiple models arising 
from data subdivisions. 

3.1 Causal networks visualization 

As mentioned, although force-directed graphs could be a feasible 

choice for demonstrating the overall structure of the network, they 

often suffer from a dense and unpredictable layout. With such 

layouts, local structures in causal sequences can become difficult to 

observe especially when they are part of more complex networks. 

However, these local structures can often be of great interest to 

domain users. For instance,  Dang et al. [24] show that recognizing 

the upstream and downstream causal relation of variables is 

commonly required by biologists when examining relations 

between proteins and biochemical reactions. While their work 

succeeds in visualizing local causal relations as pairwise pathways, 

it is less successful in conveying global structures of the network. 

We aimed to create a framework that would convey both local 

causal sequences as well as the overall network structure. For this, 

we devised a new approach that visualizes causal networks as path 

diagrams. In a causal path diagram, a causal relation is visualized 

as a straight or curved path from the cause to the effect variable 

denoted by named nodes. Such design is inspired by previous works 

using pathways to represent relation or event flows [24][25]. The 

arrow mark in the middle of a path signals the direction of the 

relation. To remit the clutter of local structures, i.e. sequences of 

causal relations, the path diagram is laid out using spanning trees 

of the network built with Breadth-first Search. More specifically, 

we first layout the nodes of the spanning trees to fit the canvas in a 

left-to-right manner regarding their parent-child relations, and then 

add back all edges during rendering. Variables not related to others 

shall be isolated at the bottom. By such, most paths of causal 

sequences will connect and direct from left to right, intuitively 

forming causal stories. Finally, although the generated diagrams are 

usually clear enough for demonstrating the causal paths, users are 

also allowed to adjust it manually by dragging each node.  

Besides the directional structure, parameterized relations also 

come with a set of statistical coefficients quantitatively measuring 

their strengths and significances. In our interface, the width of a 

path signifies the strength of the relation measured by linear 

(targeting numeric variables) or logistic (targeting categorical 

variables) regression coefficients. Using the color code for causal 

semantics we proposed in [2], green paths denote positive causal 

influence and red paths denote a negative influence. Compound 

relations between levels of categorical variables and other variables 

are colored yellow. Node colors indicate variable type – blue for 

numeric and yellow for categorical. A node’s border thickness 

suggests the goodness of fit of the variable’s regression model 

measured by r-squared (for linear regression) or McFadden’s 

pseudo r-squared (for logistic regression) coefficients [33], both 

have a value range of 0 to 1. 

Fig. 3a shows a first application, using the causal network 

learned from the AutoMPG dataset [34]. We can observe that nodes 

are mostly positioned left to right in topological order following 

their dependencies. The flow of causations, especially those with 

strong relations, become even clearer after weak relations (narrow 

paths) have been filtered out (which is a function included in the 

CSI interface). For example, Fig. 3b shows the same network with 

Fig. 3 Visualization of the causal network derived from the AutoMPG 

dataset [34]. (a) The path diagram visualization of the network. (b) 

The path diagram after setting an edge coefficient threshold of 0.3. 

(c) Visualization of the network as a force-directed graph from our 

earlier work  [2]. (d) An orthogonal graph visualization of the network. 

(b) 

(a) 

(c) (d) 



a coefficient (path width) threshold of 0.3. Here we can observe 

several causal paths flowing from left to right. One of them is 

Cylinder→Displacement→ Weight→MPG, which indicates that it is 

weight rather than the size of the engine that is directly affecting a 

car’s gas mileage. This can be a useful finding for a car company 

which now knows that it can counter-balance the adverse effect a 

big engine has on mpg by designing a car with a lighter chassis but 

designed for increased structural stability.  

The force-directed graph used in our earlier work [2] is shown in 
Fig. 3c and an example for an orthogonal graph is shown in Fig. 3d 
where nodes are connected by orthogonal edges. Both demonstrate 
the AutoMPG network to facilitate a fair comparison. Compared to 
these two methods, we believe that our new path diagram exposes 
flow of causal sequences embedded in the network in a much more 
prominent way than the two competing methods. Future work will 
compare the three methods in a formal setting. 

3.2 Visual Model Refinement with Model Scoring 

According to Fig. 2, one of the major tasks of visual causality 

analysis is to provide visual evidence supporting a user’s decision 

on refuting or accepting causal relations. This can be achieved by 

scoring each relation as well as the overall network with proper 

metrics. Although common statistics calculated from regression 

residuals, e.g. F-statistics and r-squared, are capable of measuring 

the model goodness of fit, they usually do not take model 

complexity into consideration. This implies that just by adding 

more relations into the model these statistics will mostly improve. 

However, this can potentially lead to overfitting, which means that 

the model is an extremely good fit for the dataset from which it was 

learned, but generates huge errors on any other dataset recorded 

from the same source. Hence, based on William of Occam’s 

parsimony principle, models should be kept as simple as possible. 

The idea is that by adding new relations to a causal model we obtain 

an improvement in its fit to the data to some degree, but at the same 

time the model also becomes “worse” because it is harder to fit new 

data. So, the question is how complex should the model be for a 

given dataset. 
The Bayesian Information Criterion (BIC) [8][9], applicable to 

both linear and logistic regressions, serves well in answering this 
question. It rewards the improvement in fit but also punishes for 
increasing model complexity. For a single regression model, it is 
formulated as 

 BIC = −2 ln 𝐿̂ + 𝑘 ln(𝑛) (1) 

where 𝐿̂ is the likelihood of the model, 𝑘 is the number of 
independent variables, and 𝑛 is the number of data points. The BIC 
of a linear regression can be computed from residuals following 

 BIC = 𝑛 ln 𝑅𝑆𝑆/𝑛 + 𝑘 ln(𝑛) (2) 

where the residual sum of squares 𝑅𝑆𝑆 = ∑(𝑦𝑖 − 𝑦̂)2, in which 𝑦̂ 
is the predicted value of the dependent variable given values of 
independent variables in a regression equation, and 𝑦𝑖 is the actual 
observed value of the dependent variable. The likelihood of logistic 
regressions can be computed directly using logistic functions. Eq. 
2 also suggests that a smaller BIC score with small residuals and 
less parameters implies a better regression model. 

For each variable in a causal network, 𝑘 in Eq. 2 is the number 
of incoming directed edges. Variables with no observed cause can 
be fitted with a null model (with only the error term, thus 𝑘 = 0).  
As such, a causal edge is preferable only when it reduces the error 
term of the first part of Eq. 2 more than it increases the complexity 
term of the second part of the equation, i.e. it reduces the 
regression’s BIC. Further, as suggested by Kass and Raftery [35], 
the difference of a regression’s BIC with and without a certain 

independent variable can be interpreted qualitatively following 
Table 1. According to the table, if adding a causal edge causes the 
BIC of the regression model to be reduced by more than 10 points, 
the resulting model can be deemed as “very strongly” better and the 
edge should be favored. 

Table 1 Qualitative interpretation of BIC score difference. Here 𝒑 is 

a regression model with one extra independent variable added to 𝒒. 

|𝐁𝐈𝐂𝒑 − 𝐁𝐈𝐂𝒒| Evidence Against Model 𝒒 

0 to 2 Not worth more than a bare mention 

2 to 6 Positive 

6 to 10 Strong 

>10 Very Strong 

Based on this fact, an automated analysis process can be applied 
whenever the DAG is parameterized by regressions. Since each 
node implies a variable regressed on its causes linked by all the 
incoming edges, we assign each edge a level of importance by 
calculating the regression’s BIC change when the edge is removed 
while keeping all other causes. If the BIC score goes up after 
removing it, the edge should be recognized as valid and a green plus 
glyph is attached to it in the path diagram (Fig. 4). Otherwise, it is 
considered doubtful and a red minus glyph is placed. The size of 
the glyph encodes how much the score would change such that 
bigger glyphs indicate larger score changes. However, since 
changes larger than 10 points can all be classified into the “very 
strong” category, the maximum glyph size can be correspondingly 
fixed. As such, good causal relations, as well as false ones 
suggested by the data, can be visually recognized. 

The sum of all the BIC calculated from these regressions can be 

used as the score of the overall causal network 𝑔, which is 

 𝐹(𝑔) = ∑ 𝐵𝐼𝐶𝑖
𝑖

 (3) 

where BIC𝑖 is the BIC of the regression model on variable 𝑣𝑖. Such 

a scoring strategy has also been adopted by many score-based 

inference algorithms to score potential causal structures [10][11]. 

Based on the model score, a colored bar is rendered whenever 

the user modifies the network, showing the impact of the 

modification on the overall model. A red bar means the overall 

model score is rising and a green bar stands for a score decreasing. 

The length of the bar encodes by how much the score has changed. 

With these visual hints, users can be intimately aware if they have 

made a good move in their quest of refining the model under study.  

Fig. 4 illustrates an example where we added a path from 

Displacement to MPG to the causal network of Fig. 3a. While most 

relations are valid according to the green plus glyphs, the red minus 

next to the newly added edge indicates that it is increasing the BIC 

score of the regression of MPG, thus increasing the total model 

Fig. 4 The path diagram with model scores visualizing the AutoMPG 

network. A new relation from Displacement to MPG is added. 

However, the red minus glyph next to it and the red score bar on the 

right show that the relation is not valid and so should be removed. 



score. The score bar shows the model score changed about 2 points 

(“Positive” according to Table 1), so it is suggested to be removed. 

It is worth noting that the Akaike information criterion (AIC) 

[8], which is defined very similar to BIC but with a less stringent 

punishment for model complexity, is also a widely applied scoring 

strategy used in model selection. While the AIC can work exactly 

the same function as BIC and might be preferred in some 

circumstances, we choose BIC in our implementation as it is more 

often adopted in causality studies and emphasis more on solving 

the issue of overfitting [36]. 

3.3 Working with Heterogeneous Data 

As mentioned, heterogeneous data containing both numeric and 

categorical variables are problematic when learning the structure of 

a causal DAG. It requires a CI test method capable of testing and 

conditioning on variables of arbitrary distributions. However, 

typical CI tests using partial correlation or the 𝐺2 test can only 

handle either numeric or categorical data, and none can handle 

both. Simply binning all numeric variables and applying the 𝐺2 test 

can be a plausible solution but it comes at the potential price of a 

significant information loss. With this approach, not only is there a 

loss in value scales, but also the order of bins will be ignored in the 

𝐺2 tests, both of which can introduce error relations in the result. 

Another recently proposed solution is the Global Mapping 

(GM) strategy (see our earlier paper [2]), which re-orders and re-

spaces categorical variables' levels so that Pearson’s correlations 

involving categorical variables are generally maximized with 

respect to all numeric variables in the dataset. This allows the CI 

test via partial correlation to be applied to all, which also means a 

faster inference process since the 𝐺2 test usually takes much longer. 

More specifically, the GM strategy assigns values to level 𝑗 of 

categorical variable 𝑣𝑐 according to the following formula: 

 

𝑣𝑐(𝑗) ∝ ∑ 𝛩𝑖𝜌𝑖𝜇(𝑣𝑖(𝑗))

𝐷

𝑖=1

 (4) 

where 𝜇(𝑣𝑖(𝑗)) is the average of numeric variable 𝑣𝑖 corresponding 

to level 𝑗 of 𝑣𝑐, 𝜌𝑖 is the maximized Pearson’s correlation between 

𝑣𝑖 and 𝑣𝑐, and 𝛩𝑖 decides the sign of 𝜌𝑖 by comparing the level 

orders of 𝑣𝑐 regarding 𝑣𝑖 and regarding the numeric variable most 

correlated with 𝑣𝑐, supposing there are 𝐷 numeric variables in total. 

A shortcoming of GM is that the mapped values are still discrete 
while CI tests via partial correlation assume they are continuous. 
To ease this issue, we add an un-binning (UB) process after GM in 
which mapped levels are converted to value ranges separated by the 
middle point of two levels. For example, if a three-level variable is 
mapped to values {0, 0.4, 1}, the converted ranges shall be {[-0.2, 
0.2], [0.2, 0.7], [0.7, 1.3]}. Then data points are randomly assigned 
with values in the according range based on a Gaussian distribution. 
By such, categorical variables can be simulated to be continuous. 

3.3.1 Experimental Evaluation 

We evaluate the effectiveness of the GM with and without UB via 
three runs of experiments, comparing them to the strategy of equal-
width binning of all numeric data. We use 100 randomly generated 
DAGs in each run as ground truth. A DAG has 10 nodes in the first 
run and 15 nodes in the second and third runs. A node in a DAG 
has a 0.2 probability to connect to any other nodes. Coefficients of 
graph edges are uniformly distributed within the range [0.1, 1], 
based on which 10000 data points are sampled for each DAG in the 
first two runs and 25000 in the third run. Some randomly selected 
variables are then converted into categorical ones in each run with 
equal-width binning. The three aforementioned strategies applied 
with the PC-stable algorithm [12] are tested under each setting, 
trying to reconstruct simulated DAGs from the sampled mixed-type 
data. All experiments were done with the R package pcalg [37]. 

The charts in each row of Fig.5 show the results of each run. 

The charts in the left most column of Fig. 5 (a, e, and i) visualize 

the Structure Hamming Distance (SHD) error of the causal models 

inferred with binning all variables into 2 to 7 levels, respectively.  

The SHD is defined as the minimum number of edge insertions, 

deletions, directions, and reversions needed to transform the 

estimated graph into the ground truth. In SHD, the deletion or the 

direction of an undirected edge is each counted as one error, while 

it counts as two errors if a directed edge needs to be reversed. In 

each of the three charts, we observe that the SHD increases both 

when there are too few levels (equivalent to a loss of value scale) 

as well as when there too many (ignorance of bin order). We also 

Fig. 5 Experimental evaluation of the impact of GM with/without UB in the causal inference of heterogeneous data, comparing to the strategy of 

simply binning. Charts in each row are from experiments running on the same simulated dataset. Charts in each column visualize the same 

metric. (a), (e) and (i) are the SHDs of rebuilt causal networks by binning numeric variables with different levels. (b), (f), and (j) are the SHDs 

from GM and GM+UB with different numbers of categorical variables included in the dataset. (c), (g), and (k) show the average TPR and (d), (h) 

and (l) show the average TDR of the reconstructed networks with the three strategies under different numbers of categorical variables. 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) 



observe that the error increases when reconstructing a larger 

network (comparing Fig. 5a and e), but it drops when more data is 

available (Fig. 5e and i).  

The charts in the second column of Fig. 5 (b, f, j) demonstrate 

the SHD from GM (red boxes) and GM+UB (blue boxes) under the 

situation that at most 50% of variables are categorical. While the 

error increases when more categorical variables are introduced, 

both of the two strategies outperform the best case from binning in 

all three runs (compare Fig. 5a, e, and i). A deeper inspection is 

offered when looking at charts in the right two columns of Fig. 5 

(c, d, g, h, k, and l), which shows the average True Positive Rate 

(TPR, the number of correct edges out of ground truth edges) and 

True Discovery Rate (TDR, the number of correct edges out of all 

found edges) of the results. Edge directions are omitted here. We 

learn from Fig. 5c, g, and k that GM+UB (blue line) generally 

shows a better TPR than GM (green line), which means more 

correct relations are discovered. However, when looking at Fig. 5d, 

h, and l, the TDR from GM+UB drops much faster than the pure 

GM when there are more than 4 categorical variables in the first 

two runs and 5 in the third run, which means many error relations 

are falsely linked too. Also, both GM strategies tend to introduce 

more spurious relations than binning with more categorical 

variables in the dataset. We suspect that when the ratio of 

categorical variables is too large, the global re-ordering and re-

spacing can no longer preserve the fidelity of the data. 
Taking all of the experiment results into consideration, we 

suggest users take the GM strategy whenever no more than 30% of 
the variables in a dataset are categorical, while UB can further boost 
the inference accuracy. When there are more categorical variables, 
binning numeric variables could be a more plausible choice. 
Finally, we would like to stress that the strategy is only applied 
when learning the structure of causal networks. Conversely, in the 
subsequent parameterization, the original levels of the categorical 
variables are used as they can be well handled by logistic 
regressions. Our GUI allows users to choose any of the three 
methods when working with heterogeneous datasets. 

4 CAUSALITY ANALYSIS WITH MULTIPLE MODELS 

As mentioned, our framework also supports the visual investigation 

of multiple causal models underlying a dataset. We now present 

details of this mechanism, along with illustrative examples. 

4.1 Causal Inference on Data Subdivisions 

According to Simpson’s Paradox, a relation found in the overall 

data may not hold in certain data subdivisions, and conflicting 

relations buried in some specific data ranges may cancel each other 

so that none can be observed in the general population. Such effect 

has often been observed in correlation analysis [29]. For example, 

by bracketing the price of a product to lower ranges one may see 

positive correlations with sales, while negative correlations come 

with a higher price range. What’s more, causal relations with 

opposite directions may also exist as feedback loops. For instance, 

the price of a product will affect sales when sales are low, but a 

large number of sales can also reduce the cost and so lower the 

price. As a result, it is often the case that multiple causal models 

differing in both structure and regression parameters can arise from 

data partitions. Ignoring such facts and always learning the model 

using the whole dataset will potentially lead to faulty relations 

returned by inference algorithms. Without data partitioning, the 

regression model constructed will probably contain considerable 

large residuals. Seeing that the BIC of a model is computed from 

such residuals (Eq. 2), refining these miscalculated causal models 

based on their score change can also be difficult in this situation. 

To eliminate or at least reduce such disturbances and reveal the 

different causal models hiding in the data, an interactive parallel 

coordinates interface (Fig. 1c) is employed in our CSI framework. 

Via the parallel coordinates, users can directly observe potentially 

attractive data subdivisions and partition the data by adjusting the 

brushed value range of variables. Conversely, data partitions can 

also be detected automatedly based on unique values of some 

variables or as data clusters recognized by clustering algorithms, 

using the interactive facilities shown in Fig. 1e. 

These interactive facilities also allow users to manage the 

recognized partitions. Users can save a partition as a tag, recall it in 

the parallel coordinates by clicking the tag, or fit it to a causal 

structure by hitting the “Fit Model” button. Most importantly, they 

can learn a causal model from each such data subdivision and refine 

it with the visual approaches introduced in Section 3. 

4.1.1 Illustrative Example  

We now demonstrate how to discover different causal models from 

data with the CSI interface through an illustrative example, 

leveraging the Sales Campaign dataset. This dataset contains 10 

numerical variables and 600 records describing several important 

factors in sales marketing and their effects on a company’s 

financials. Each sample in the dataset represents a sales person’s 

sales behaviors. Three data clusters have been recognized by k-

means clustering [38] and are colored blue, yellow and red, 

respectively (with interactive facilities shown in Fig. 1e). It is worth 

noting here that while we have implemented the k-means in the 

current version of the CSI interface for illustration, the proper 

choice of clustering algorithms may vary depending on the data. 

When constructing the causal model, we assume the following 

background knowledge. A sales pipeline starts with a lead 

generator developing prospective customers called Leads. When 

some leads return positive feedback, they become WonLeads and 

an increased sales pitch at cost of CostPerWL is invested in each of 

them, so that they might be further developed into real customers 

called Opportunities. The TotalCost reports the actual cost of each 

sales person. The goal of the entire efforts is to increase the 

expected return on investment (ExpectROI) and ultimately 

maximize the pipeline revenue (PipeRevn). 

In our earlier work [2] we found several meaningful relations but 

these were conjunctive over the entire population of sales people in 

the dataset. However, when looking at the three clusters in the 

parallel coordinates in Fig. 6a it seems more meaningful to consider 

the three groups of sales people separately, as it is obvious that they 

are behaving very differently. It is likely that by doing so specific 

sales plans can be strategized for each of them. Hence, we click the 

“Infer on Each” button in Fig. 1e and three causality graphs are 

generated (see Fig. 6b, c, and d). They allow specified prescriptive 

analytics to be made for each sales group. 

First, it is interesting to note that the three causality graphs have 

some structures that are similar, which is consistent with the 

background knowledge that there must be some marketing model 

guiding the sales behaviors. From the three graphs, one can see that 

CompRate, PlanROI, and PlanRevn are not related in the pattern 

and thus adjusting any of these variables will likely not affect 

revenue. A relation observed in all three graphs is that ExpectROI 

is directly affecting PipeRevn in a positive manner. This implies 

that the company's revenue prediction model seems to work well. 

TotalCost is consistently caused by CostPerWL, which is 

reasonable as investing in each customer represents the major costs 

in the pipeline. Further sound business facts realized by all groups 

are: (1) higher TotalCost will reduce ExpectROI, and (2) more 

Leads will require a reduction of CostPerWL (which is natural 

when the budget is fixed). 



However, the pathway CostPerWL→Opportunity→ExpectROI 

is somehow different for each model, implying distinct patterns in 

each group’s sales behaviors. In the causality graph of the blue 

cluster (Fig. 6b), it is striking to see that more investment on each 

won lead is not bringing them more “opportunities” (referring to 

the negative effect of CostPerWL on Opportunities), i.e. they might 

have invested too much on each customer and probably 

inappropriately. But, the opportunities they get with their approach 

are profitably increasing ExpectROI and revenue, and so overall, 

they are successful. In contrast, the sales people in the yellow group 

(Fig. 6c) are gaining more opportunities from their investments 

(referring to the positive relation from CostPerWL to 

Opportunities), however, this is not bringing them more revenue, 

as Opportunities is not positively related to ExpectROI. Thus, they 

should work on increasing the profit of each closed deal. Finally, 

the sales group of the red cluster converts much less ExpectROI into 

PipeRevn, as indicated by the thinner green arrow between these 

two in Fig. 6d. Based on the negative causal relation from 

Opportunities to ExpectROI, this may have similar reasons than for 

the yellow cluster that their deals are not profiting, although their 

generous investment in CostPerWL does bring them many 

opportunities. They might better reduce the cost of each won lead 

and focus on increasing the profit. 

Based on the different causal patterns observed, the analyst team 

may have many suggestions for each sales group. While discussing 

these specific strategies is beyond the scope of our research we 

believe that the case study presented here has shown that causality 

analysis with data partitioning can indeed reveal different causal 

facts hidden in the data. 

4.2 Causal Model Visual Diagnostics 

While causal inference on data subdivisions can result in multiple 

models revealing different causal patterns, diagnosing these models 

by investigating their similarities can often reveal interesting 

knowledge, especially when the data is bracketed into a large 

number of subsets and a corresponding number of models are 

learned. Meanwhile, doing so also brings the issue that the number 

of data points available to learn each model will be heavily reduced 

with more partitions added. This may potentially lower the 

statistical saliency of causal relations so that they may often be 

missed. Reducing p-value thresholds in CI tests could be a solution, 

however, it also results in more false relations and thus in less 

credible models.  

To uncover the common causal patterns and extract reliable 

relations from all learned models, we propose a visual pooling 

process that can either occur at the causal link level or at the model 

level. In the following, we shall present the specific visual pooling 

strategies leveraging a real-world dataset. 

4.2.1 Pooling at the Causal Model Level 

The purpose of pooling at the causal model level is to recognize the 

possible grouping of causal models so that common causal relations 

can be summarized from models in the same group and different 

causal trends can be compared between models in different groups. 

To achieve this, we represent each causal graph as an adjacency 

matrix. Since a causal model features both its structure and 

parameters, we use the regression coefficient of each edge as the 

corresponding element in the matrix. Then, we can pool at the 

causal model level by clustering these adjacency matrices to 

uncover the different causal mechanisms embedded in them. 

To demonstrate this method, we utilize the Ocean Chlorophyll 

dataset. The dataset was merged from several satellite data sources 

[39][40][41][42], monitoring the area of S22° ~ S25°, E50° ~ E53° 

(located at the south Madagascar sea). Each data source contains a 

particular physical property – ocean surface temperature, surface 

currents speed, wind speed, thermal radiation, precipitation rate, 

and water mixed layer depth, or a biological property – 

photosynthesis radiation activation and chlorophyll concentration. 

These satellite data come in different horizontal resolutions and 

were recoded into a 0.25-by-0.25-degree resolution in longitude 

and latitude. At each of the 169 geolocations, the time series spans 

12 years (from 1998 to 2009) and were averaged in months (thus 

144 data points). Partitioning data by each geolocation, 169 causal 

models are learned. Fig. 1f contains the heatmap of these models, 

where a darker tile denotes a model with a lower model score (thus 

better goodness) following the criterion in Section 3.2. Fig. 1b is 

the causal model denoted by the highlighted tile (that is colored in 

orange) in Fig. 1f. 

To find possible groupings of the 169 models derived from the 

dataset, we apply k-medoids clustering [43], which is good at 

Fig. 6 Causality analysis on the Sales Campaign dataset containing three sales groups. (a) The parallel coordinates view of the CSI interface 

displaying the three clusters of the dataset. (b), (c), (d) The path diagrams of causal networks generated from the corresponding sales groups. 

Both the structure and parameters of the three networks are somehow different, which implies different facts in sales behaviors. 

(b) Blue Cluster 

(c) Yellow Cluster (d) Red Cluster 

(a) 



finding the representative objects among all. Here, by setting 𝑘 =
3 with the controls in Fig. 1f, a new heatmap is generated in Fig. 

7a. The three tiles marked with numbers denote the medoid models 

found by the clustering algorithm, i.e. the most representative 

model in each cluster. These three medoid causal models are 

visualized in Fig. 7b (blue cluster), c (red cluster), and d (green 

cluster). Here we place the nodes at the same location for each 

model to make comparisons easy for the analyst. As he has been 

trying to use this dataset to relate the unique cycle of the 

chlorophyll concentration variation with other variables, the most 

attractive difference for him could be that the ChlrConc is 

associated with other variables differently in the three 

representative models. Users can also examine other models by 

clicking on tiles of the heatmap. Also, we can cluster models into 

more groups with controls shown in Fig. 1f, although we observe 

there are indeed three dense areas in the t-SNE layout [44] of these 

models’ adjacency matrices in Fig. 7e. The t-SNE layout is not 

included in the current CSI interface but can be easily incorporated 

in future extension. 

4.2.2 Pooling at the Causal Links Level 

To summarize the common and credible relations from models in 

each cluster, we need to conduct pooling at the causal links level. 

The simplest pooling strategy that occurs at the causal link level is 

to count the frequency of each possible causal relation observed in 

all models. Then by setting thresholds on such statistics, only causal 

relations observed more than a certain number of times are 

returned, resulting in a combined model. A shortcoming of such 

strategy is that it equally considers all observed causal models, 

while they may actually have different levels of credibility. This 

might be fine for datasets in which all bracketed subsets enclose a 

sufficient number of records. But for other scenarios where the 

dataset is bracketed into a large number of subdivisions each 

containing only limited data samples, pooling by frequency may 

potentially enlarge the impact of the false relations found in low 

credibility models.  

When a group of models is following similar causal processes, 

it is reasonable to infer that those true causal relations will be 

observed frequently in models with higher credibility so that they 

should be emphasized in pooling; while models with lower 

credibility can be considered random noise and thus should have a 

small weight. When a dataset is evenly partitioned (this is important 

as BIC is sensitive to sample numbers 𝑛 in Eq. 2), the credibility of 

causal models learned from each data subset can be measured by 

their model scores. Then, as all possible causal relations form a 

complete graph, we assign each edge of the graph a normalized 

score calculated by summing up the credibility of all models in 

which the relation is observed. Specifically, the credibility score 

𝐶𝑒(𝑒𝑗) for edge 𝑒𝑗  is calculated as 

 
𝐶𝑒(𝑒𝑗) =

∑ 𝛿𝑖𝑗𝑖 (𝐹𝑚𝑎𝑥 − 𝐹𝑖)

𝑁(𝐹𝑚𝑎𝑥 − 𝐹𝑚𝑖𝑛)
 (5) 

where 𝛿𝑖𝑗 = 1 if 𝑒𝑗  is included in model 𝑖, otherwise 𝛿𝑖𝑗 = 0; 𝐹𝑖 is 

the score of model 𝑖, while 𝐹𝑚𝑎𝑥 and 𝐹𝑚𝑖𝑛 are the largest and the 

smallest score of all 𝑁 models. By such, we consider edges with 

larger 𝐶𝑒(𝑒𝑗) are with higher credibility. Users can then work with 

a slider control to filter out edges with small scores, leaving only 

reliable relations. 

We illustrate the effect of such pooling strategy by continuing 

the example of the Ocean Chlorophyll dataset. After clustering the 

causal models into three clusters, three combined models are 

pooled and shown in Fig. 7f, g, and h respectively. Here a 

credibility threshold of 0.5 is applied so that only strong credible 

causal relations are retrieved. Looking at the three models, there are 

seemingly some causal loops between environmental and 

biological variables in the whole area as causal relations with 

opposite directions between the same pair of variables are observed 

in different models. But one direction of the loop could be more 

dominating than the other in some sub-areas. For example, 

MaxLayrDepth is a good predictor of PhotActiRadi in the pooled 

models of the blue and the red clusters but the relation is reversed 

in the green cluster’s model. Similarly, MaxLayrDepth is he only 

variable strongly associated with ChlrConc but the causal 

mechanisms are different in the three models. The scientific 

implication behind these findings could be rich but explaining them 

Red Cluster Medoid Blue Cluster Medoid 

Red Cluster Pooled Blue Cluster Pooled 

(b) (c) (d) 

(e) 

(a) 

(f) (g) (h) 

Green Cluster Medoid 

Green Cluster Pooled 
Fig. 7 Diagnostic of causal models learned from the Ocean Chlorophyll dataset by conditioning on each geolocation. (a) Heatmap of all models 

clustering into three clusters. (b), (c), and (d) are the representative models for the three clusters corresponding to the numbered tiles in (a). (e) 

is the t-SNE layout of these models’ adjacency matrices in which we observe there are indeed three clusters. (f), (g), and (h) are pooled causal 

relations from the three clusters accordingly, with a credibility coefficient threshold of 0.5. 



goes beyond the purpose of this paper. But the presented example 

has demonstrated the effectiveness of our pooling methods. 

5 CASE STUDIES  

In this section, we further demonstrate the use of the CSI interface 

by analyzing two real-world datasets with all the techniques 

proposed in previous sections. 

5.1 Case Study – Presidential Election Dataset 

Donald Trump’s unexpected triumph in the 2016 US Presidential 

Election has gathered worldwide attention and sparked extensive 

discussion. Since most polls and political analyses before the 

election failed to predict the win, there has been strong interest in 

finding the causes of what led to it. In an attempt to gain insight 

into this question, we have used our framework to conduct a 

causality analysis on the Presidential Election dataset. The dataset 

contains variables of the county-level election results and of each 

county’s selected geographical features, i.e. population, vote rate, 

race ratios, income level, the level of education, etc., which are 

extracted from a more inclusive Kaggle data archive [45]. 

To analyze the dataset using our CSI interface, we first load the 

data and then select variable types (categorical or numeric) as well 

as data preparation method (GM with UB or equal-width binning) 

via the pop-up window shown in Fig. 8a. Then the data is visualized 

in the parallel coordinates as shown in Fig. 8b. Here data points 

corresponding to counties of the 11 swing states (according to the 

website Politico [46]) are brushed, as the election results in these 

areas are more decisive and Trump won in most of them. Then by 

clicking “Go Causality!” the causal network of Fig. 8c is returned. 

We can observe many interesting causal relations in Fig. 8c. For 

example, Age65Plus and White (population percentage of those 

aged 65 or plus and those identified as White) are positively causing 

TrumpSupport, which is the supporting rate of candidate Trump in 

the county. This means that older people and Whites are mostly 

supportive for Trump. What’s more, both of these two variables are 

positively causing VoteRate via different causal paths, implying 

Trump supporters are voting actively. On the other hand, those who 

were not preferring Trump are the immigrants and people with high 

education level, referring to the negative relation from 

ForeignBorn and BachelorDegree to TrumpSupport. However, the 

negative causal path ForeignBorn→ BachelorDegree→ 

Age65Plus→ VoteRate says that more immigrants and more people 

with Bachelor degree may indirectly hurt voting rate. Besides, 

when looking at the parallel coordinates, values on the axes of 

ForeignBorn and BachelorDegree are generally much smaller than 

values on axes of Age65Plus and White, suggesting the latter two 

are much bigger groups.  

There are many more causal patterns we can observe that may 

entail various social facts. We cannot list them all here. While the 

presented analytics has explained the major reasons behind 

Trump’s victory, we believe the causality analysis can also be 

applied to other political datasets, e.g. poll data, in a similar 

manner, which can potentially improve prediction accuracy. 

5.2 The ACT Dataset 

The original ACT dataset [47] was used to study why high school 

graduates change majors at college and has been modified so that 

its variables are more suited in a causality context. There are about 

230,000 data points each represents a participated student. A 

student would report his/her college major three times in total – the 

expected one at the senior year of high school (T1) and the actual 

major at the first and second year of college (T2 and T3). Majors 

are categorized into 18 fields. A test was also conducted at each 

point in time quantifying the student’s fitness for his choice 

(Fit_T1/T2/T3). Other factors considered include a student’s 

gender, ACT score, attended college type (2 or 4 years), and 

transfer between colleges. 

 Since there are two times at which a student may change majors 

(T1 to T2 and T2 to T3), we arrange the variables into two different 

but overlapping groups, each corresponds to a sub-dataset. We then 

further subdivide the first sub-dataset based on students’ major at 

T1 and the second based on major at T2, so that students selecting 

different fields are studied separately, avoiding possible 

disturbances by Simpson’s Paradox. Conditioning on these 

subdivisions, 36 causal networks (18 majors ×2 sub-datasets) are 

inferred and refined with our CSI framework. Some are visualized 

in Fig. 9. Again, we place the nodes at the same location for each 

model from the same sub-dataset to facilitate comparison. 

 Fig. 9a, b, and c are the causal models learned correspondingly 

from students who claimed at T1 that they would take Computer 

Science and Math, Health Science, and Business in college. Here 

Changed_T2 indicates whether the student entered a different 

major in the first year of college. There are some interesting 

observations when comparing the three figures. For example, in 

Fig. 9a, we see there is a gender bias indicated by the positive edge 

Gender → Changed_T2. As males are valued 1 in the binary 

variable Gender, this implies that they are more likely than females 

to major differently from what they expected earlier. Meanwhile, 

ACTScore is also playing as a positive motivation. However, the 

two relations become just the opposite in Fig. 9b, implying that a 

low ACT score would very likely make a girl, who initially wanted 

to take Health Science, attend another major. It also appears that 

students who wanted to enter Business schools are the only group 

among the three who considered their fitness to the major (referring 

(b) (c) (a) 
Fig. 8 Analyzing the Presidential Election dataset with the CSI framework. (a) The pop-up window where the user can select variable types and 

data preparation method. (b) The parallel coordinates visualizing the dataset. Counties of the 11 swing states are brushed as the election results 

in these areas are more decisive. (c) The derived causal network which uncovers many interesting facts behind the election results. 



to Fit_T1 → Changed_T2 in Fig. 8c), even though they usually 

didn’t get to change to a better fitting one (the negative edge 

Changed_T2 → Fit_T2). As each data subdivision has a sufficient 

but different number of data points, the strategy of pooling by 

frequency is then applied. Fig. 9d shows the causal relations pooled 

from the 18 models with a frequency threshold of 0.5. We see that 

a student’s decision for college major is generally affected by his 

ACT score and the type of college he had been admitted to, while 

the fitness score is seemingly irrelevant in most cases. 

To see the motivation behind the major switch of a college 

student actually taking the above three majors at T2, the second 

data-subset variables are analyzed. Fig. 9e, f, and g are the 

corresponding causal networks and Fig. 9h is the pooled model with 

the frequency threshold of 0.5. From these visualizations, we can 

see that the transfer of college now becomes the most common 

reason for a student to change major, regarding the edge 

Transferred → Changed_T3 in the three models as well as in the 

pooled model, while gender bias can only be observed in very few 

fields, e.g. the edge Gender →Changed_T3 observed in Fig. 9f but 

not in Fig. 9e and 9g. Again, the fitness score is generally shown to 

be irrelevant. 

Due to space limitations, we cannot list all inferred models here, 

but examining them comparably can surely lead to many more 

interesting findings. Nevertheless, the case study on the ACT 

dataset has demonstrated that different models underlying data 

subdivisions can be effectively uncovered with our CSI framework. 

6 CONCLUSIONS 

We have presented several new VA techniques for making visual 

causality analysis more practical for real-world applications. All of 

these new visual analytical methods were implemented in our CSI 

(Causal Structure Investigator) interface. They are general and 

applicable to a wide set of real world cases as demonstrated by 

examples and case studies presented in this paper. 

In future work, we would like to compare different causal 

network visualizations with user studies, such that the most 

receptive one can be chosen accordingly. Further, we also plan to 

visualize the differential network so that two or more causal models 

can be compared visually in a single visualization.  

A present limitation of our framework is that it does not support 

causality analysis on time series data, which would have many 

popular applications, such as finance, health, etc. A possible 

solution is to utilize the theory of logic-based causality, which can 

be capable of learning causes of certain events within time series. 

Another future work we like to explore is to gain the ability to build 

causal models utilizing data from different measurements and 

sources but generated by the same causal mechanism, which is 

called the data fusion problem [48] or integrative causal analysis 

[49]. A visual interface supporting such analytics would allow users 

to study scientific systems over a series of data collections. 
Finally, as illustrated in this paper, causality analysis can serve 

as a starting point for prescriptive analytics. Automatic generation 
of such analytics is also a promising extension to our work, where 
specific actions could be recommended given a user’s request. 

ACKNOWLEDGEMENT 

This research was partially supported by NSF grant IIS 1527200 
and the Ministry of Science, ICT and Future Planning, Korea, under 
the “IT Consilience Creative Program (ITCCP)” supervised by 
NIPA. Partial support was also provided by the US Department of 
Energy (DOE) Office of Science, Office of Basic Energy Sciences, 
Division of Chemical Sciences, Geosciences, and Biosciences. 
Some of this research was performed in the Environmental 
Molecular Sciences Laboratory, a national scientific user facility 
sponsored by the DOE’s OBER at Pacific Northwest National 
Laboratory (PNNL). PNNL is operated by the US DOE by Battelle 
Memorial Institute under contract No. DE-AC06-76RL0. 

REFERENCES 

[1] T. Vigen, “Spurious Correlations.” [Online]. Available: 

http://www.tylervigen.com/spurious-correlations. [Accessed: 01-

Mar-2017]. 

[2] J. Wang and K. Mueller, “The Visual Causality Analyst: An 

Interactive Interface for Causal Reasoning,” IEEE Trans. Vis. 

Comput. Graph., vol. 22, no. 1, pp. 230–239, 2016. 

[3] E. H. Simpson, “The Interpretation of Interaction in Contingency 

Tables,” Source J. R. Stat. Soc. Ser. B, vol. 13, no. 2, pp. 238–241, 

1951. 

[4] P. J. Bickel, E. A. Hammel, and J. W. O’connell, “Sex bias in graduate 

admissions: data from berkeley.,” Science, vol. 187, no. 4175, pp. 

(a)T1-T2 Comp. Sci. & Math (b)T1-T2 Health Sci. & Techno (c)T1-T2 Business 

(e)T2-T3 Comp. Sci. & Math (f)T2-T3 Health Sci. & Techno 

(d)T1-T2 Pooled, Threshold=0.5 

(g)T1-T2 Business (h)T1-T2 Pooled, Threshold=0.5 

Fig. 9 Causal models inferred from the ACT dataset [47]. (a), (b), and (c) are causal networks explaining why students changed to other majors 

when entering college. (d) The model pooled from the first group of 18 models learned from data subdivisions. (e), (f), and (g) are causal networks 

explaining why students changed major in the first two years in college. (d) The model pooled from the second group of 18 models. 



398–404, 1975. 

[5] J. Pearl, Causality: Models, Reasoning, and Inference. Cambridge 

University Press, 2000. 

[6] J. Pearl, “An Introduction to Causal Inference,” Int. J. Biostat., vol. 6, 

no. 2, pp. 1–62, 2010. 

[7] P. Spirtes, C. Glymour, and R. Scheines, Causation, Prediction, and 

Search. New York, NY: Springer New York, 1993. 

[8] K. P. Burnham and R. P. Anderson, “Multimodel Inference: 

Understanding AIC and BIC in Model Selection,” Sociol. Methods 

Res., vol. 33, no. 2, pp. 261–304, 2004. 

[9] G. Schwarz, “Estimating the Dimension of a Model,” Ann. Stat., vol. 

6, no. 2, pp. 461–464, 1978. 

[10] D. M. Chickering, “Optimal structure identification with greedy 

search,” J. Mach. Learn. Res., vol. 3, pp. 507–554, 2002. 

[11] G. Cooper and E. Herskovits, “A Bayesian Method for the Induction 

of Probabilistic Networks from Data,” vol. 347, pp. 309–347, 1992. 

[12] D. Colombo and M. H. Maathuis, “Order-independent constraint-

based causal structure learning,” J. Mach. Learn. Res., vol. 15, no. 1, 

pp. 3741–3782, 2014. 

[13] J. Pearl and T. S. Verma, “A theory of inferred causation,” Stud. Log. 

Found. Math., vol. 134, pp. 789–811, 1995. 

[14] J. P. Pellet and A. Elisseeff, “Using Markov Blankets for Causal 

Structure Learning,” J. Mach. Learn. Res., vol. 9, pp. 1295–1342, 

2008. 

[15] K. Baba, R. Shibata, and M. Sibuya, “Partial correlation and 

conditional correlation as measures of conditional independence,” 

Aust. New Zeal. J. Stat., vol. 46, no. 4, pp. 657–664, 2004. 

[16] R. E. Neapolitan, “Chapter 10.3.1,” in Learning Bayesian Networks, 

Pearson, 2003, pp. 600–603. 

[17] W. Bergsma, “Nonparametric testing of conditional independence by 

means of the partial copula,” Arxiv Prepr. arXiv11014607, pp. 1–14, 

2011. 

[18] K. Zhang, J. Peters, D. Janzing, and B. Schölkopf, “Kernel-based 

Conditional Independence Test and Application in Causal 

Discovery,” 27th Conf. Uncertain. Artif. Intell. (UAI 2011), pp. 804–

813, 2011. 

[19] N. Friedman and D. Koller, “Being Bayesian about network structure. 

A Bayesian approach to structure discovery in Bayesian networks,” 

Mach. Learn., vol. 50, no. 1–2, pp. 95–125, 2003. 

[20] S. Bongers, J. Peters, B. Schölkopf, and J. M. Mooij, “Structural 

Causal Models: Cycles, Marginalizations, Exogenous 

Reparametrizations and Reductions,” arXiv, Nov. 2016. 

[21] M. Chen et al., “From Data Analysis and Visualization to Causality 

Discovery,” Computer., vol. 44, no. 10, pp. 84–87, 2011. 

[22] N. Elmqvist and P. Tsigas, “Animated visualization of causal relations 

through growing 2D geometry,” Inf. Vis., vol. 3, no. 3, pp. 154–172, 

2004. 

[23] G. Vigueras and J. A. Botia, “Tracking Causality by Visualization of 

Multi-Agent Interactions Using Causality Graphs,” in Programming 

Multi-Agent Systems, Berlin, Heidelberg: Springer Berlin Heidelberg, 

2008, pp. 190–204. 

[24] T. Dang, P. Murray, J. Aurisano, and A. Forbes, “ReactionFlow: an 

interactive visualization tool for causality analysis in biological 

pathways,” in Proceedings of the 5th Symposium on Biological Data 

Visualization: Part 2, 2015, vol. 9, no. Suppl 6. 

[25] K. Wongsuphasawat and D. Gotz, “Exploring flow, factors, and 

outcomes of temporal event sequences with the outflow 

visualization,” IEEE Trans. Vis. Comput. Graph., vol. 18, no. 12, pp. 

2659–2668, 2012. 

[26] M. Monroe, R. Lan, H. Lee, C. Plaisant, and B. Shneiderman, 

“Temporal event sequence simplification,” IEEE Trans. Vis. Comput. 

Graph., vol. 19, no. 12, pp. 2227–2236, 2013. 

[27] Z. Liu, Y. Wang, M. Dontcheva, M. Hoffman, S. Walker, and A. 

Wilson, “Patterns and Sequences: Interactive Exploration of 

Clickstreams to Understand Common Visitor Paths,” IEEE Trans. Vis. 

Comput. Graph., vol. 23, no. 1, pp. 321–330, 2017. 

[28] J. Zapata-rivera, E. Neufeld, and J. E. Greer, “Visualization of 

Bayesian Belief Networks,” pp. 6–9, 2003. 

[29] Z. Zhang, K. T. Mcdonnell, E. Zadok, and K. Mueller, “Visual 

Correlation Analysis of Numerical and Categorical Data on the 

Correlation Map,” IEEE Trans. Vis. Comput. Graph., vol. 21, no. 2, 

pp. 289–303, 2015. 

[30] C. Schulz, A. Nocaj, J. Goertler, O. Deussen, U. Brandes, and D. 

Weiskopf, “Probabilistic Graph Layout for Uncertain Network 

Visualization,” IEEE Trans. Vis. Comput. Graph., vol. 23, no. 1, pp. 

531–540, 2017. 

[31] J. Zhao, M. Glueck, S. Breslav, F. Chevalier, and A. Khan, 

“Annotation Graphs: A Graph-Based Visualization for Meta-Analysis 

of Data Based on User-Authored Annotations,” IEEE Trans. Vis. 

Comput. Graph., vol. 23, no. 1, pp. 261–270, 2017. 

[32] Y. Wang et al., “AmbiguityVis: Visualization of Ambiguity in Graph 

Layouts,” IEEE Trans. Vis. Comput. Graph., vol. 22, no. 1, pp. 359–

368, 2016. 

[33] D. McFadden, “Conditional logit analysis of qualitative choice 

behavior,” in Frontiers in Econometrics, 1974, pp. 105–142. 

[34] K. Bache and M. Lichman, “UCI Machine Learning Repository,” 

University of California, Irvine, School of Information. 2013. 

[35] R. E. Kass and A. E. Raftery, “Bayes Factor,” Journal of American 

Statistical Association, vol. 90, no. 430. pp. 773–795, 1995. 

[36] J. J. Dziak, D. L. Coffman, S. T. Lanza, and L. Runze, “Sensitivity 

and specificity of information criteria,” 2012. 

[37] M. Kalisch, M. Machler, D. Colombo, M. H. Maathuis, and P. 

Buhlmann, “Causal Inference Using Graphical Models with the R 

Package pcalg,” J. Stat. Softw., vol. 47, no. 11, p. 26, 2012. 

[38] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. 

Silverman, and A. Y. Wu, “An efficient k-means clustering algorithm: 

analysis and implementation,” IEEE Trans. Pattern Anal. Mach. 

Intell., vol. 24, no. 7, pp. 881–892, 2002. 

[39] NASA, “SeaWiFS Project.” [Online]. Available: 

https://oceancolor.gsfc.nasa.gov/SeaWiFS/. [Accessed: 01-Mar-

2017]. 

[40] NASA, “MODIS.” [Online]. Available: https://modis.gsfc.nasa.gov/. 

[Accessed: 01-Mar-2017]. 

[41] European Centre for Medium-Range Weather, “ECMWF.” [Online]. 

Available: http://www.ecmwf.int/. [Accessed: 01-Mar-2017]. 

[42] NASA, “Precipitation Measurement Missions.” [Online]. Available: 

https://pmm.nasa.gov/TRMM. [Accessed: 01-Mar-2017]. 

[43] H. S. Park and C. H. Jun, “A simple and fast algorithm for K-medoids 

clustering,” Expert Syst. Appl., vol. 36, no. 2 PART 2, pp. 3336–3341, 

2009. 

[44] L. J. P. Van Der Maaten and G. E. Hinton, “Visualizing high-

dimensional data using t-sne,” J. Mach. Learn. Res., vol. 9, pp. 2579–

2605, 2008. 

[45] J. Wilson, “2012 and 2016 Presidential Elections,” Kaggle. [Online]. 

Available: https://www.kaggle.com/joelwilson/2012-2016-

presidential-elections. [Accessed: 01-Mar-2017]. 

[46] POLITICO, “Battleground States Polling Average.” [Online]. 

Available: http://www.politico.com/2016-election/swing-states. 

[Accessed: 01-Mar-2017]. 

[47] “IEEE VGTC VPG International Data-Visualization Contest.” 

[Online]. Available: 

http://vacommunity.org/ieeevpg/viscontest/2015/index.html. 

[Accessed: 24-Mar-2017]. 

[48] E. Bareinboim and J. Pearl, “Causal inference and the data-fusion 

problem,” Pnas, vol. 113, no. 27, pp. 7345–7352, 2016. 

[49] I. Tsamardinos, “Advances in Integrative Causal Analysis,” in 

Proceedings of the UAI 2015 Conference on Advances in Causal 

Inference, 2015, pp. 90–91. 

 


